114 research outputs found

    A Novel Waveform to Extract Exercise Gas Exchange Response Dynamics: The Chirp Waveform

    Get PDF
    Characterizing exercise gas exchange response dynamics reveals important information about physiological control processes and cardiopulmonary dysfunction. However, current methods for extracting exercise response dynamics typically use multiple step-wise transitions, limiting applicability of this technique. PURPOSE: We designed a new protocol (chirp waveform) to extract exercise gas exchange response dynamics in a single visit. We tested the hypothesis that gas exchange response dynamics extracted from chirp forcing would be similar to those extracted from step-wise transitions. METHODS: Thirty-one participants (14 young healthy, 7 older healthy, and 10 patients with chronic obstructive pulmonary disease) visited the laboratory on three occasions. On visit 1, participants performed a ramp incremental test to determine the gas exchange threshold (GET). On visits 2-3, participants performed either a chirp or step-wise protocol in a randomized order. Chirp forcing consisted of sinusoidal fluctuations in work rate with constant amplitude and progressive shortening of sine periods. Square protocol consisted of 3 square-wave transitions each of 6 min duration. Work rate amplitude (from 20 W to ~95% of the individual’s GET) and exercise duration (30 min) were the same in both protocols. The input-output relationship was characterized using a first-order linear transfer function containing a system gain (K) and time constant (τ) [G(s)= K/(τ×s+1)]. Parameter identification was performed in Matlab using the Matlab System Identification toolbox. Agreement between measures was established using Bland-Altman analysis and Rothery’s Concordance Coefficient (RCC). RESULTS: No systematic bias (mean difference of chirp minus square-wave; Δmean) and good reliability was found for V̇O2 K [Δmean: 0.25(1.03) mL/min/W, p=0.179; RCC: 0.773, p=0.004], V̇O2 τ [Δmean: 0.30(7.08) s, p=0.815; RCC: 0.837, p2 K [Δmean: -0.19(1.57) mL/min/W, p=0.512; RCC: 0.827, pp=0.009] and good reliability (RCC: 0.794, p2 τ. CONCLUSION: The chirp waveform allows extraction of gas exchange response dynamics similar to those obtained from standard methods, thus overcoming the need for multiple tests

    SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring

    Get PDF
    The COVID-19 pandemic is an ongoing global challenge for public health systems. Ultrasensitive and early identification of infection is critical in preventing widespread COVID-19 infection by presymptomatic and asymptomatic individuals, especially in the community and in-home settings. We demonstrate a multiplexed, portable, wireless electrochemical platform for ultra-rapid detection of COVID-19: the SARS-CoV-2 RapidPlex. It detects viral antigen nucleocapsid protein, IgM and IgG antibodies, as well as the inflammatory biomarker C-reactive protein, based on our mass-producible laser-engraved graphene electrodes. We demonstrate ultrasensitive, highly selective, and rapid electrochemical detection in the physiologically relevant ranges. We successfully evaluated the applicability of our SARS-CoV-2 RapidPlex platform with COVID-19-positive and COVID-19-negative blood and saliva samples. Based on this pilot study, our multiplexed immunosensor platform may allow for high-frequency at-home testing for COVID-19 telemedicine diagnosis and monitoring

    Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD

    Get PDF
    Muscle fatigue (a reduced power for a given activation) is common following exercise in COPD. Whether muscle fatigue, and reduced maximal voluntary locomotor power, are sufficient to limit whole-body exercise in COPD is unknown. We hypothesized in COPD: 1) exercise is terminated with a locomotor muscle power reserve; 2) reduction in maximal locomotor power is related to ventilatory limitation; and 3) muscle fatigue at intolerance is less than age-matched controls. We used a rapid switch from hyperbolic to isokinetic cycling to measure the decline in peak isokinetic power at the limit of incremental exercise ('performance fatigue') in 13 COPD (FEV1 49±17 %pred) and 12 controls. By establishing the baseline relationship between muscle activity and isokinetic power, we apportioned performance fatigue into the reduction in muscle activation and muscle fatigue. Peak isokinetic power at intolerance was ~130% of peak incremental power in controls (274±73 vs 212±84W, p<0.05), but ~260% in COPD (187±141 vs 72±34W, p<0.05) - greater than controls (p<0.05). Muscle fatigue as a fraction of baseline peak isokinetic power was not different in COPD vs controls (0.11±0.20 vs 0.19±0.11). Baseline to intolerance, the median frequency of maximal isokinetic muscle activity was unchanged in COPD but reduced in controls (+4.3±11.6 vs -5.5±7.6%, p<0.05). Performance fatigue as a fraction of peak incremental power was greater in COPD vs controls and related to resting (FEV1/FVC) and peak exercise (V̇E/MVV) pulmonary function (r2=0.47, r2=0.55, p<0.05). COPD patients are more fatigable than controls, but this fatigue is insufficient to constrain locomotor power and define exercise intolerance

    Distinguishing Increased Adiposity and/or Aerobic Deconditioning as Moderators of Low VO2peak in Obese Men

    Get PDF
    Peak oxygen uptake (V̇O2peak) in a cardiopulmonary exercise test (CPET) is a strong predictor of morbidity, mortality, and quality of life. V̇O2peak in obese individuals is typically below the lower limit of normal (2 transport and utilization, i.e. aerobic deconditioning; or both. We hypothesized a modified CPET, to measure the fraction of maximum isokinetic power that can be supported by aerobic metabolism, will distinguish between adiposity and deconditioning effects on V̇O2peak. PURPOSE: To compare V̇O2peak and isokinetic neuromuscular performance in obese vs non-obese men. METHODS: A modified CPET with maximal (3 s) isokinetic cycling power at baseline and the limit of ramp-incremental (RI) exercise was used to calculate: A) baseline maximum isokinetic power (Piso); B) tolerance index (TI), % of Piso at V̇O2peak; C) fatigue index (FI), % reduction in Piso per RI-watt at V̇O2peak; D) power reserve (PR), isokinetic power available at V̇O2peak expressed as % RI-wattpeak. The FRIEND nomogram was used to predict V̇O2peak. Data are mean(SD) and were assessed by t-test. RESULTS: Compared to controls (n=24), obese men (n=20) were older (32(5) vs 26(7) yr), had greater BMI (38(6) vs 23(2) kg/m2), but were not different in stature (177(5) vs 180(7) cm) or predicted V̇O2peak (3.49(0.49) vs 3.58(0.36) L/min). Obese men had lower V̇O2peak (2.84(0.42) vs 3.71(0.45) L/min, p2peak (82(15) vs 104(12) %, pIndependent of body mass, obese men had preserved leg strength (normal Piso), but the fraction of maximum isokinetic power supported by aerobic metabolism at RI intolerance was reduced (low TI) with greater fatigability (high FI); each consistent with aerobic deconditioning. A modified CPET with maximal isokinetic power measurements can distinguish the effects of increased adiposity from aerobic deconditioning on V̇O2peak in obese men

    Principles, Insights and Potential Pitfalls of the Non-Invasive Determination of Muscle Oxidative Capacity by Near-Infrared Spectroscopy

    Get PDF
    Skeletal muscle oxidative capacity is highly plastic, strongly associated with whole-body aerobic capacity (16, 18) and state of health. Loss of muscle oxidative capacity is associated with physical inactivity, aging and chronic disease (17), and has been implicated in the pathophysiology of obesity and diabetes (21). Evaluating these changes has traditionally been limited to invasive or costly assessments (biopsy or ³¹P MRS). To address this, Hamaoka and colleagues developed an innovative, non-invasive approach using near-infrared spectroscopy (NIRS) to quantitatively measure muscle oxygen consumption (mV̇O₂; 12) and use this to infer muscle oxidative capacity based on the mV̇O₂ recovery rate constant (k) (23; later modified 26). This technique has been subsequently used to interpret relative differences in oxidative capacity across a wide range of muscles, ages and disease states (Figure 1C). The purpose of this Viewpoint is to open a discussion on the principles, insights and potential pitfalls of using NIRS to measure k and infer muscle oxidative capacity

    Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee-extension

    Get PDF
    During constant-power high-intensity exercise, the expected increase in oxygen uptake (V̇O2) is supplemented by a V̇O2 slow component (V̇O2 sc ), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with (31)P magnetic resonance spectroscopy (MRS) and whole-body V̇O2 during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized (31)P spectra were collected from the quadriceps throughout using a dual-tuned ((1)H and (31)P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable V̇O2 sc (mean ± SD, 0.06 ± 0.12 l min(-1)) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min(-1); each P = n.s.). During HVY, the V̇O2 sc was 0.37 ± 0.16 l min(-1) (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min(-1), or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the V̇O2 sc during HVY (r(2) = 0.06; P = n.s.). This lack of relationship between ΔATPtot and V̇O2 sc , together with a steepening of the [PCr]-V̇O2 relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O)

    A new bronchodilator response grading strategy ıdentifies distinct patient populations

    Get PDF
    Rationale: A positive bronchodilator response (BDR) according to American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines require both 200 ml and 12% increase in forced expiratory volume in 1 second (FEV1) or forced vital capacity (FVC) after bronchodilator inhalation. This dual criterion is insensitive in those with high or low FEV1. Objectives: To establish BDR criteria with volume or percentage FEV1 change. Methods: The largest FEV1 and FVC were identified fromthree pre- and three post-bronchodilator maneuvers in COPDGene (Genetic Epidemiology of COPD) participants. A total of 7,741 individuals with coefficient of variation less than 15% for both FEV1 and FVC formed bronchodilator categories of FEV1 response: negative (0.00% to 0.00 L to 9.00% to 16.00% to 0.16 L to 26.00% or >0.26 L). These response size categories are based on empirical limits considering average FEV1 increase of approximately 160 ml and the clinically important difference for FEV1. To compare flow and volume response characteristics, BDR-FEV1 category assignments were applied for the BDR-FVC response. Results: Twenty percent met mild and 31% met moderate or marked BDR-FEV1 criteria, whereas 12% met mild and 33% met moderate or marked BDR-FVC criteria. In contrast, only 20.6% met ATS/ERS positive criteria. Compared with the negative BDR-FEV1 category, the minimal, mild, moderate, and marked BDR-FEV1 categories were associated with greater 6-minute-walk distance and lower St. George's Respiratory Questionnaire and modified Medical Research Council dyspnea scale scores. Compared with negative BDR, moderate and marked BDR-FEV1 categories were associated with fewer exacerbations, and minimal BDR was associated with lower computed tomography airway wall thickness. Compared with the negative category, all BDR-FVC categories were associated with increasing emphysema percentage and gas trapping percentage. Moderate and marked BDR-FVC categories were associated with higher St. George's Respiratory Questionnaire scores but fewer exacerbations and lower dyspnea scores. Conclusions: BDR grading by FEV1 volume or percentage response identified subjects otherwise missed by ATS/ERS criteria. BDR grades were associated with functional exercise performance, quality of life, exacerbation frequency, dyspnea, and radiological airway measures. BDR grades in FEV1 and FVC indicate different clinical and radiological characteristics.United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Heart Lung & Blood Institute (NHLBI)National Center for Advancing Translational Sciences through UCLA CTSI Gran
    • …
    corecore